Robust Antiviral Activity in Chronic HBV Infected Chimpanzees by RNAi Treatment

Laura Sepp-Lorenzino1, Daniel Freedman1, Andrew Sprague1, Martin Maier1, Vasant Jadhav1, Satya Kuchimanchi1, Natalie Keirstead1, Patrick Haslett1, Karin Galli1, Stuart Missin1, Tuyen Nguyen1, Svetlana Shulga Morskaya1, Greg Hinkle1, Klaus Charisse1, Rajeev Kallanthottathil1, Muthiah Manoharan1, Rachel Meyers1, Leon Carayannopoulos2, Guoxin Wu2, Dennis Colussi2, Bonnie Howell2, Heather Trexler2, Ken Koeplinger2, Doug Thudium2, Jose Lebrón2, Marian Gindy2, Jane Fontenot & NIRC Staff2, Martin Koser2, Marc Abrams2, Steve Ludmerer2

1Alnylam Pharmaceuticals, Cambridge, MA, 2Merck & Co., Inc., West Point, PA, 3New Iberia Research Center, University of Louisiana, LA
Abstract

Background: Although nucleos(t)ide DNA polymerase inhibitors and interferon effectively reduce viral titers in chronic hepatitis B, these therapies fall to eradicate the infection in ~90% of treated patients. Even in the absence of viral replication, high plasma levels of non-infectious, HBsAg-containing, subviral particles are thought to mediate immunological tolerance, preventing immune mediated control of infection. Reduction in HBsAg plasma levels of >0.5 log is the single best predictor of immunological cure (viral antigen seroclearance and seroconversion to HBsAb+ve status). An RNAi therapeutic targeting the HBV genome has the potential to achieve a “functional cure” by effectively decreasing expression of tolerogenic HBsAg, in addition to inhibiting all steps of the HBV life cycle.

Methods and Results: Proof-of-concept pharmacology was generated in chronically-infected chimpanzees (n=4) treated with a siRNA targeting a conserved HBV region formulated as a lipid nanoparticle (LNP). When administered as a single 0.25 mg/kg IV dose, the RNAi therapeutic showed a mean 1.9 log decrease in viral DNA with >2 log reduction in the subject with the highest viral titer. The effects were RNAi-specific as determined with a control siRNA-LNP formulation, and mediated by an RNAi mechanism as detected by 5’RACE. In multi-dose, dose-escalation chimp studies, doses of 0.125 to 0.5 mg/kg achieved mean (and maximum) reductions of 2.9 (>4) log in viral titers and 2.0 (2.3) log in HBsAg. In one animal with >5X elevated ALT levels at baseline, administration of the RNAi therapeutic was associated with LFT normalization. In addition, two animals showed 2-3X ALT elevations ~1-2 months post dosing associated with increases in interferon-gamma and interleukin-6, suggestive of potential “therapeutic flares” related to immune clearance of infected hepatocytes. A therapeutic RNAi candidate, ALN-HBV, consisting of a GalNAc-targeted, Enhanced Stabilization Chemistry (ESC) siRNA conjugate designed for SC administration is being optimized and characterized for activity in vitro and in vivo.

Conclusion: A single siRNA targeting a conserved region in the HBV genome induced specific, potent and durable silencing of HBV viral transcripts and tolerogenic HBsAg. The clinical development strategy for ALN-HBV envisions finite treatment in combination with standard-of-care nucleos(t)ide analogs as a means for inducing a functional cure in CHB patients.
Background

Fig 1. Chronic Hepatitis B (CHB) Infection – Unmet Need and Product Opportunity

Chronic HBV infection is a significant worldwide problem
- One third of world population infected
- 400M people with chronic disease
- Most unaware of infection
- High prevalence expected for next 3 decades

Clinical manifestations severe
- Chronic inflammation leading to cirrhosis and hepatocellular carcinoma
- Approved therapies are not curative: they reduce viral load, resulting in improved liver histology, decreased progression to cirrhosis and cancer, but do not eliminate the virus
- Tolerability and emergence of resistance limits use

Alnylam gained valuable assets across RNAi platform and programs, including HBV program, through Sirna acquisition in January 2014

Fig 2. Compact HBV Genome Provides Multiple Opportunities for siRNA Targeting

- 3.2 kb partially double stranded DNA genome (relaxed circle, rcDNA)
- 4 overlapping viral transcripts encode 7 viral proteins translated across 3 reading frames, and replication intermediate (pre-genomic RNA)
- siRNA is capable of silencing all steps in the viral life cycle, as well as reducing the expression of tolerogenic viral antigens such as HBsAg

Fig 3. ALN-HBV RNAi Therapeutic for Treating Chronic Hepatitis B Infection

Goal: Develop RNAi therapeutic, which in combination with established HBV treatment, enables a “functional cure”
- Negative for circulating HBV DNA, HBeAg, HBsAg; positive for anti-HBsAg Ab
- Limited duration of therapy ~6-12 months (monthly SC injections)
- Viral escape unlikely with RT inhibitors on board

Strategy
1. Select potent, selective siRNA targeting a highly conserved region of the HBV genome (Genotypes A-H)
2. Achieve proof-of-pharmacology with siRNA formulated as a lipid nanoparticle (LNP) in chronically-infected chimps
3. Develop hepatocyte-targeted Enhanced Stabilization Chemistry (ESC)-GalNAc siRNA conjugate
Fig 4. Alnylam’s ESC-GalNAc-siRNA Represents a Significant Advance in SC Delivery

- Hepatocyte-targeting via asialo-glycoprotein receptor (ASGPR)
- Enhanced metabolic stability results in increased potency and prolonged duration
- Wide therapeutic index (>100x) maintained; safe and efficacious in diseased liver
- Benefits: Decreased dose level and dose frequency, low volume dosing, decreased potential for ISR, improved COG
- ESC-conjugate design translates well across multiple siRNAs and targets
- ALN-AT3 Phase 1 data demonstrate translation of potency and duration in humans for ESC-GalNAc-conjugates

Metabolic Profiling in Liver 8 hr Post Dose

Liver Exposure [siRNA] (ng/g)

Efficacy (NHP)

<table>
<thead>
<tr>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Enzymatic cleavage site (thickness reflects frequency of corresponding cleavage products observed)
Methods

1. Identified single siRNA targeting highly conserved region across genotypes A-H
2. Formulated siRNA in a lipid nanoparticle formulation containing novel cationic lipid
3. Evaluated efficacy of HBV-specific siRNA in 4 chronically infected chimps after single IV infusion at 0.25 mg/kg
4. Measured plasma HBV titers, HBsAg and HBeAg, and HBV mRNA silencing, RISC-loading in liver biopsies
5. Demonstrated specificity of action with a control siRNA-LNP and RNAi mechanism by 5’RACE of slicing products
6. Confirmed siRNA site conservation via HBV genotype sequencing, pre and post dose
7. Extended results in follow-up, multiple ascending dose study; 0.125, 0.25, 0.5 mg/kg IV q3wk (n=4 chimps)
8. Determined clinical chemistry and plasma cytokine levels pre/post dosing

Results

Fig 5. Sequence-Specific Antiviral Response in HBV-Infected Chimpanzees

- Starting viral titers ranging from 10^4 to 10^{10} copies/mL in 4 chronically infected chimps
- Mean $1.9 \log_{10}$ decrease in viral DNA on days 2-6 post single 0.25 mg/kg IV dose
- $>2 \log_{10}$ reduction in circulating viral DNA in highest titer animal
- Control siRNA-LNP confirms specificity

![Graph showing sequence-specific antiviral response in HBV-infected chimpanzees](image)
Fig 6. Confirmed RNAi Mechanism in HBV-Infected Chimps

- Robust and durable RISC-loading out to day 14 (last evaluable)
- Confirmation of RNAi mechanism at both days tested
- Sequencing of 5’RACE products confirmed cleavage site

Liver RISC Loading

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV: siRNA / mi-16</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

5’ RACE RNAi Cleavage Products

Expected 182 bp, correct sequence

Fig 7. Sequence-Specific HBsAg Decrease in HBV-Infected Chimps

- HBsAg up to 107 pg/mL in serum
- Mean 0.7 log10 decrease in HBsAg 2-3 weeks post single 0.25 mg/kg IV dose
- Control siRNA-LNP confirms specificity

Absolute [HBsAg]

Normalized [HBsAg]
Methods and Results:

Proof of Mechanism:

Clinical manifestations severe enough to necessitate treatment:
- Chronic HBV infection is a significant worldwide problem.

RNAi Design:
- Clinical manufacturing process for tolerogenic RNAi-
 encoded formulations.
- Metabolic Profiling in Liver.
- Robust Antiviral Activity.
- GalNAc Conjugate
- Enhanced Stabilization Chemistry (ESC) Design
- Represents a Significant Advance in SC Delivery
- Limited duration of therapy (~6 months).

Virologic Efficacy in HBV Rodent Models:
- Hepatitis B surface antigen (HBsAg) negative for circulating HBV DNA.
- HBsAg+ HBV RNA+ infected tissue.

Tolerability and emergence of resistance limits use:
- **Results:**
 - ALN: Reduction in viral antigens such as HBeAg, HBxAg.
 - ALN: Activation of the PD1/PDL1 immune checkpoint is associated with viral clearance.

Fig 1.
- RNAi Levels
- Liver RISC Levels
- 0.125 mg/kg on day 0
- 0.25 mg/kg on day 21
- 0.50 mg/kg on day 42
- IV, n=4

Fig 2.
- Liver siRNA Levels (nmol/g)
- Days 2, 23, 44
- 0.125 mg/kg
- 0.25 mg/kg
- 0.50 mg/kg

Fig 3.
- Viral RNA Silencing
- Relative to Day -21 biopsy
- PCR site
- 2205
- 2535
- 3030
- 647
- 1620
- 1609

Fig 4.
- Plasma Concentration (pM)
- Low, Intermediate, High
- Treatment
- Fold Change
- ΔCt (Log2 Fold Change)
- Time (days, 48 hr post-dose)

Fig 5.
- Liver PK
- Homology
- Sequence
- On/Off Target
- Reporter Cell Line Silencing
- 0.1 to 1

Fig 6.
- AD-65403/AD-66110
- CHB
- Full therapeutic activity
- PCR site
- 2205
- 2535
- 3030
- 647
- 1620
- 1609

Fig 7.
- AD-65403/AD-66110
- HDV
- Full therapeutic activity
- PCR site
- 2205
- 2535
- 3030
- 647
- 1620
- 1609

Fig 8.
- Dose-Dependent Liver [siRNA], RISC Loading and Viral RNA Silencing After Ascending Doses in HBV Infected Chimps
Mean 2.9 log10 decrease in viral DNA day 2-6 post 0.5 mg/kg dose; >4 log10 reduction in circulating viral DNA achieved in highest titer animal

Mean 2.0 log10 reduction in HBsAg at 0.5 mg/kg dose; up to 2.3 log10 reduction achieved

Fig 9. Dose-Dependent Antiviral Response in HBV-Infected Chimps Following Multiple Ascending Doses

Fig 10. ALT Normalization for Chimp with Most Robust Virologic Response; Potential Indication of Therapeutic Flare

- High baseline ALT reversed in highest titer chimp
- 2x ALT increase post treatment in 2/4 chimps, possible therapeutic immune flare
- Includes increases in IL6 and IFNγ
On Track for ESC-GalNAc-siRNA Conjugate DC Selection in late 2014 for IND at ~ YE 2015

Enhanced Stabilization Chemistry (ESC)
Same target sequence, multiple chemical modifications

Reporter Cell Line Silencing

Viral RNA RT-PCR

Secreted HBsAg ELISA

HepG2.2.15 Cell Silencing

Liver-Restricted Immune Reactivation - ALN-PDL
- Obligate liver pathogens exploit the tolerant liver environment, further enhancing immune suppression via multiple mechanisms
- Activation of the PD1/PDL1 immune checkpoint is associated with establishment and maintenance of chronic infections
- Silencing liver PDL1 would enhance NK and T-cell activity against infected hepatocytes, while reducing the risk of broad systemic tolerance suppression
- POC studies conducted in a mouse model of Adenoviral infection demonstrated that PDL1 silencing was associated with increased viral clearance

Chronic Hepatitis D – ALN-HDV
- Co-/super-infection with HBV: delta virus relies on HBV S antigen for liver tropism and infectivity
- Severe clinical manifestations: cirrhosis develops in 70-80% of cases within 5-10 yr (3X higher risk and younger onset vs. CHB); mortality ~2-20% (10x higher than CHB)
- 15-20 M patients infected WW; 80 K patients in US

Dual RNAi therapeutic approach: ALN-HBV + ALN-HDV
- ALN-HBV: S antigen silencing will inhibit HDV life cycle
- ALN-HDV: direct anti-HDV effects by silencing RNA genome, anti-genome and viral transcripts

Adeno-Ova viral infection

Dolna et al Molecular Therapy Nucl Acids 2013, 2 e72
Conclusions

- Significant unmet need exists for novel HBV therapies resulting in a “functional cure”
- HBV RNAi therapeutic offers significant promise via a novel mechanism: silencing viral transcripts will inhibit all steps of the viral life cycle (replication, assembly, secretion of virus) and decrease the production of tolerogenic viral antigens, including highly abundant non-infective HBsAg particles
- Proof of concept data in naturally HBV-infected chimps suggests robust efficacy profile
 - Significant multi-log decrease in circulating virus and HBsAg
 - Confirmed specificity of effect and proof of RNAi mechanism
- ESC-GalNAc-siRNA conjugate against HBV enables hepatocyte-specific delivery, subcutaneous dosing, minimal toxicity and broad genotypic coverage
- ALN-HBV Development Candidate selection (DC) late ’14; IND ~YE ’15
- Multiple opportunities exist for RNAi drugs against Hepatitic Infectious Diseases. Initial emphasis on direct acting targets for HBV and HDV, and immune checkpoint blockade