Digestive Disease Week
RNAi Therapeutics Ameliorate Liver Disease Associated with Alpha-1 Antitrypsin Deficiency

May 6, 2014
Alfica Sehgal
Alpha-1 Antitrypsin (AAT)

AAT is a serine proteinase inhibitor (serpin)
- Inhibits neutrophil elastase
- Inhibits trypsin, thrombin, chymotrypsin, factors XI and XIII, plasmin
- Abundant plasma protein

AAT deficiency
- Autosomal recessive disorder with multiple alleles (>80)
 - Nulls, PiMM, PiZZ, PiSS, PiMZ, PiSZ
 - Alleles described based on migration on IEF
 - Alleles have different impact on secretion
- PiZZ accounts for 95% of AAT-deficient patient population
 - Z allele point mutation Glu342Lys
 - Z-AAT not folded correctly in ER
 - Reduced secretion → lung disease
 - Forms polymers with aggregation → liver disease
Severe AAT Deficiency
Genotype-Phenotype Relationships

- Pi null
- PiZZ
- PiSZ
- PiMZ
- PiMM

Emphysema
(% Affected)

Liver Disease

Serum α1AT Level (µM)

Range of AAT in individuals

Z gene: Scandinavia, British Isles, France, Germany, Baltics
S allele: Spain and Portugal

- **Inherited deficiency** associated with lung and liver disease.
- **Wide individual variation**
 - **Lung**: “Deficient” serum level leaves tissues susceptible to damage by neutrophil proteases. In particular the lungs to smoke, leading to emphysema
 - **Liver**: Misfolded mutant Z protein accumulates in liver, → injures hepatocytes, → liver fibrosis, cirrhosis and hepatocellular carcinoma
 - ~15% of Protein is secreted
Accumulation of Mutant Z-AAT in Liver

PAS Staining

Globules of AAT

EM

2400X

Inclusions in ER

An et al., Hepatology; 41:160-7 (2005); Lomas et al., Nature; 357:605-7 (1992)
Using RNA interference (RNAi) to Knockdown Z-AAT Protein
Therapeutic Hypothesis for ALN-AAT

Z-AAT aggregates in liver leading to inflammation, fibrosis, cirrhosis, HCC

ALN-AAT

Reduction in mRNA in liver will reduce mutant protein

Decrease in Z-AAT polymers, reduces aggregate deposition in liver, yields less hepatocyte damage

Decrease in fibrosis and HCC
Z-AAT Knockdown in Transgenic Animals
Multi-Dose Pre-Clinical Efficacy with LNP-AAT

Z-AAT knockdown with LNP-AAT

- **Summary**
 - IV dosing Q2W x 7 at 0.3mg/kg
 - >90% Decrease in liver mRNA, serum protein
 - Decrease in proliferation index as measured by BrdU incorporation
 - Decrease in mitochondrial injury and fibrosis

First IV dose
Day 0 14 28 42 56 70 84
8-10 week olds
Sac- Day 86

Relative Density Units

hAAT Protein Levels

- **Control**
 - Polymer: 1.2
 - Monomer: 1.0

- **LNP-AAT**
 - Polymer: 0.4
 - Monomer: 0.2

* p=0.00001
p=0.00226

Decrease in PAS Positive Globules

Sehgal, AASLD, Nov. 2012
Asialoglycoprotein Receptor (ASGPR)
- Clears serum glycoproteins via clathrin-mediated endocytosis
- Well suited for receptor-mediated, targeted delivery
 - Highly expressed in hepatocytes
 - 0.5-1 million copies/cell
 - High rate of uptake
 - Recycling time ~15 minutes
- Conserved across species

GalNAc-siRNA
- GalNAc ligand conjugated to chemically modified siRNA to mediate targeted delivery
- Trivalent GalNAc carbohydrate cluster has nM affinity for ASGPR
- Administered subcutaneously (SC)
- Enhanced Stabilization Chemistry (ESC) GalNAc-siRNA conjugates achieve improved potency and duration

Adapted from Essentials of Glycobiology (2009)
Experiment Hypothesis
- Transgenic human Z-AAT expressing mice develop liver tumors with age
- Can chronic dosing in aged mice with fibrotic livers decrease the tumor incidence?

Decrease in Liver mRNA

<table>
<thead>
<tr>
<th>Day 0</th>
<th>14</th>
<th>28</th>
<th>42</th>
<th>56</th>
<th>70</th>
<th>84</th>
<th>98</th>
<th>112</th>
<th>126</th>
<th>132</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Serum AAT After First Injection

- PBS Female
- PBS Male
- AAT-Female
- AAT-Male
Z-AAT Knockdown Improves Liver Physiology

PBS Treated Animal

AAT-siRNA Treated Animal

Decrease in Fibrosis

Decrease in Immune Cells

Relative Col1a2 mRNA Levels

Relative PTPRC mRNA Levels

$p=0.04$

$p=0.002$
Z-AAT Knockdown Reduces Tumor Formation

PAS Globule Staining

Tumor Incidence

- 4/6 PBS animals had liver tumors
- 1/6 AAT treated animals had liver tumor

<table>
<thead>
<tr>
<th>Ttmt</th>
<th>An #</th>
<th>Observation (p=0.045)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No macroscopic tumor</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>large tumor in left lateral lobe, ~5mm diameter</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2mm tumor in caudate lobe, many lesions in 2nd aux lobe</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.5mm tumor in caudate lobe, 1mm lesion in right medial lobe, multiple 1mm lesions in 1st aux lobe</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3mm tumor in left lateral lobe</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>No macroscopic tumor</td>
<td></td>
</tr>
</tbody>
</table>

AAT Globules

- Relative Globule Area
- PBS: 1.2, AAT-siRNA: 0.8, p=0.02

Proliferating Cells

- Relative BrdU Count
- PBS: 1.2, AAT-siRNA: 0.8, p=0.02

PBS

AAT-siRNA

- No macroscopic tumor
- 3mm tumor in caudate lobe
Therapeutic Hypothesis Holds True
Summary

- Suppressing Z-AAT leads to
 - Reduction in PAS globules and AAT polymers
 - Reduction of hepatic fibrosis markers
 - Decrease in proliferative index
 - Decrease in hepatic tumor incidence
- Demonstrates efficient and robust delivery to fibrotic livers of aged animals
- Chronic dosing can decrease disease burden
ALN-AAT Development Candidate in Mice
Duration, Dose Response and Repeat Dosing

Screening AAT-siRNA Candidates

- Relative Serum hAAT (prebleed=1)
- Days: -4, 3, 7, 10, 14, 21
- ALN-AAT Dev Candidate

Single Dose Efficacy

- ED50 ~ 0.5mg/kg

Single Dose: Dose Response and Duration

- Relative Serum hAAT (prebleed=1)
- Days: -5, 5, 10, 15, 20
- ALN-AAT Dev Candidate

Multi-Dose at 0.5mg/kg, BIW

- Relative serum AAT (prebleed=1)
- Days: 10, 30, 50, 70
- ALN-AAT Dev Candidate 0.5mg/kg biw x 4
ALN-AAT Development Candidate in NHP
Initial Pre-Clinical Results in Single Dose Study

Ongoing Study in NHP

- Single dose at 1.0 and 3.0 mg/kg
 - N=3, males
 - Serum AAT by ELISA
- Well tolerated
 - No safety findings
 - No change in cytokines
 - No injection site reactions
- Rapid, potent AAT knockdown
 - Single dose ED$_{50}$ <3 mg/kg
 - Comparable single dose potency with other ESC-GalNAc-siRNA conjugates
 - E.g., ALN-PCSsc and ALN-AT3 (pre-clinical)
 - Expect multi-dose ED$_{50}$ <1 mg/kg
Summary

• Identified potent RNAi Therapeutic Development Candidate, ALN-AAT, for treatment of liver disease associated with AAT deficiency

• Pre-clinical data with ALN-AAT demonstrated
 » Dose-dependent and durable lowering of AAT in liver after SC dosing in mice and NHP
 » Efficacy and tolerability was maintained in mice with liver disease
 » Chronic siRNA dosing leads to sustained knockdown of AAT → improved liver physiology

Next Steps

• Plan for IND filing in mid-2015
Contributors

Core Team
- Alfica Sehgal (PL)
- Dan Shufrin (PM)
- Oved Amitay
- Scott Barros
- Jeff Cehelsky
- Klaus Charisse
- Renta Hutabarat
- Stu Milstein
- Lubo Nechev
- Sara Nochur
- Amy Simon

Lead Finding Team
- Brian Bettencourt
- Jim Butler
- Rajeev Kallanthottathil
- Satya Kuchimanchi
- Kevin Fitzgerald
- Shannon Fishman
- Don Foster
- Greg Hinkle
- Martin Maier
- Mano Manoharan
- Kun Qian

Extended Team/Advisors
- Ju Liu
- Rachel Meyers
- Mike Placke
- Akshay Vaishnaw
- Xuemei Zhang

Collaborators
- Jeff Teckman
- Keith Blomenkamp

- The Alpha-1 Foundation
- The Alpha-1 Project