Reversir™ Platform for Rapid and Potent Reversal of siRNA Silencing Activity

Ivan Zlatev, Ph.D.
11th Annual Meeting of the OTS
Leiden, the Netherlands
October 13, 2015
Outline

• Introduction

• Design considerations

• Reversir activity \textit{in vivo} and \textit{in vitro}

• Summary
ESC-siRNA-Conjugates and Reversir™ Platform

ESC-siRNA-conjugates Exhibit Prolonged Duration of Activity
Example: Factor IX silencing after single SC dose in mice

- Enable rapid and complete reversal of siRNA silencing activity to expand the utility of ESC-conjugates displaying prolonged duration of silencing
- Allows tailored control of RNAi pharmacology

ESC-siRNA-conjugates Exhibit Prolonged Duration of Activity
Example: Factor IX silencing after single SC dose in mice

Normalized Factor IX activity in serum

PBS
ESC-siRNA-conjugate

0% 20% 40% 60% 80% 100%
0 5 10 15 20 25 30 35 Days

REVERSIR is a trademark of Alnylam Pharmaceuticals, Inc.
Silencing by GalNAc-siRNA-Conjugates

1. Binding and internalization of siRNA-conjugate by ASGPR
2. RISC loading and formation of functional RISC
3. mRNA target recognition and cleavage
4. Catalytic process
1. Binding and internalization of Reversir conjugate by ASGPR
2. Irreversible binding of Reversir as a “synthetic target” to AS-strand in functional RISC
3. Abrogation of mRNA target recognition and cleavage

Proposed Reversir Mechanism

Anti-miRs/Antagomirs:
- Meister G et al. RNA 2004,10:544-550
- Rottiers V et al. Sci Transl Med 2013,5:212ra162
- Staedel C et al. Mol Ther Nucleic Acids 2015,4:e246

ASO – Sense Oligonucleotide Antidote:
- Crosby J et al. Nucleic Acid Ther 2015, ASAP
Reversir Design Considerations

RISC-loaded siRNA Antisense Strand – Target of Reversir

Tiling the target binding region

High-affinity/sugar-phosphate backbone modifications for thermal and nuclease stability

Working Hypothesis and Strategy

• Use complementary high affinity oligonucleotides as a “synthetic target” or decoy to abrogate silencing activity of antisense-loaded RISC

• Identify critical design parameters and optimize design for maximal potency
Rapid and Full Reversal of Silencing Activity Achieved by Single Reversir Dose in Mice

- Rapid reversal of conjugate activity from nadir levels within days of Reversir dosing
- Targeted delivery via GalNAc:ASGPR system is essential for the Reversir activity
Reducing Reversir Length Improves Potency
Reversal of Factor IX siRNA-Conjugate Activity in Mice

- Clear length-dependent effect on potency
- Is this due to enhanced inherent potency or improved functional delivery?
Why Are Shorter Reversir Molecules More Potent? Probing the Mechanism

- Improved thermal stability and inherent potency \((in vitro\ transfection)\) with longer (full length) Reversir – opposite of \(in vivo\) trend

- Free uptake in primary hepatocytes (uptake by ASGPR) show improved activity by shorter Reversir - mimicking the \(in vivo\) results

- Data suggestive of improved functional delivery

\[\begin{align*}
\text{siRNA control} & \quad 22\text{-mer} & \quad 15\text{-mer} & \quad 8\text{-mer} \\
60.0 & \quad 65.0 & \quad 70.0 & \quad 75.0 & \quad 80.0 & \quad 85.0 \\
\text{T}_m (\degree C) & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow
\end{align*}\]
Optimal Reversir Activity Requires Targeting of the Full Seed Region

Free uptake assay in primary mouse hepatocytes

Structure of hAgo2-Antisense

Schirle N et al. Science 2014,346:608

Nucleotides 2-5 exposed for initial target recognition

AS match: 2-16

Robust reversal of conjugate activity

AS match: 3-17

AS match: 5-19

AS match: 7-21

Little to no reversal of conjugate activity
Reversir Designs Show Good Tolerability in Rat
Single SC dose of 30 or 100 mg/kg

- Promising safety profile observed for 4 different Reversir designs
 - Lack of changes in body weight gain
 - No liver enzyme elevation observed across doses (30 and 100 mg/kg) and time points (Day 4 and 8)
Summary

• Developed a Reversir technology that allows rapid, potent and full reversal of conjugate silencing activity in preclinical studies
 » Reversir design includes the use of high-affinity modifications and same ASGPR/GalNAc-mediated delivery as for siRNA-conjugates
 » Promising safety profile observed to date in rats

• Ability to quickly reverse the silencing activity allows tailored control of RNAi pharmacology for ESC-siRNA-conjugates

• Modular nature of Reversir platform provides quick adaptation to any siRNA-conjugate in our pipeline
Acknowledgements

- Mark Schlegel
- Jennifer Willoughby
- Adam Castoreno
- June Qin
- Shigeo Matsuda
- Sarfraz Sheikh
- Casey Trapp
- Stuart Milstein
- Satya Kuchimanchi
- Kallanthottathil G. Rajeev
- Akin Akinc
- Scott Barros
- Muthiah Manoharan
- Rachel Meyers
- Martin A. Maier
- Vasant Jadhav

Thank you!