A Randomized, Placebo Controlled, Phase 1 Study of ALN-AS1, an Investigational RNAi Therapeutic for the Treatment of Acute Hepatic Porphyrias

Interim presentation of Safety and Pharmacodynamic Results

SSIEM Annual Symposium 07 September 2016

Eliane Sardh1,2, Pauline Harper1,2, Nabil AL-Tawil1,3, Craig Penz4, Amy Chan4, Chang-Heok Soh4, William Querbes4, Amy Simon4, Penelope Stein5, David Rees5

1Karolinska University Hospital, 2Porphyria Centre Sweden, 3Karolinska Trial Alliance, Stockholm, Sweden, 4Alnylam Pharmaceuticals, Cambridge, MA, 5Kings College Hospital, London, UK
Acute Hepatic Porphyrias Pathophysiology

Acute Hepatic Porphyrias (AHP)
Inborn errors of heme synthesis resulting from enzyme defects in the liver

- **Acute Intermittent Porphyria (AIP)**
 - Most common AHP: prevalence 2-5 per 100,000, ~5-10% with manifest disease
 - Autosomal dominant mutation in the HMBS (PBGD) gene: 50% of activity

- **Disease Pathophysiology**
 - ALA synthase (ALAS1) is induced, leading to accumulation of toxic heme intermediates ALA and PBG that cause nerve damage and acute attacks

- **Affecting**
 - Central Nervous System (seizures, PRES)
 - Autonomous Nervous System (abdominal pain, hypertension, tachycardia)
 - Peripheral Nervous System (muscle weakness, paralysis)

- **Treatment**
 - Human hemin
ALN-AS1: RNAi Therapeutic Hypothesis
Knockdown of Liver ALAS1 Protein to Reduce ALA/PBG

ALAS1 protein

ALA/PBG induce porphyria symptoms

ALAS1 protein

ALN-AS1 knockdown of ALAS1 reduces ALA/PBG production and prevents attacks

ALN-AS1

ALAS1 siRNA

Liver targeting ligand

Sardh: A Randomized, Placebo Controlled, Phase 1 Study of ALN-AS1, Sep 07 2016
ALN-AS1 Phase 1 Study: AIP patient populations

Asymptomatic High Excreters (ASHE)
• Persistently elevated ALA/PBG
• More clinically relevant than healthy volunteers
• Ability to measure key biomarkers
• Medically stable patient population for initial safety evaluation (studied in prior enzyme replacement trial)

Recurrent attack patients
• Highest unmet medical need
• Evaluate safety and dose regimen in small subset of patients

Studies A and B (SAD/MAD) in ASHE patients

Study Design
- Randomized, single-blind, placebo-controlled *single and multiple ascending dose* study in ASHE patients

Primary Objective
- Safety and tolerability of ALN-AS1

Secondary Objectives
- Characterize ALN-AS1 pharmacokinetics (PK) and pharmacodynamics (PD), i.e. ALA and PBG lowering

Exploratory Objectives
- Characterize circulating ALAS1 mRNA from the liver in urine and serum using a circulating RNA detection (cERD) assay

Part C (MD) in recurrent attack patients

Study Design
- Placebo-controlled *multiple dose study* in recurrent attacks patients

Primary Objective
- Safety and tolerability of ALN-AS1

Secondary Objectives
- Characterize ALN-AS1 PK and PD

Exploratory Objectives
- Clinical activity of ALN-AS1 on attack characteristics and treatment, and patient quality of life
- Characterize circulating ALAS1 mRNA from the liver in urine and serum
ALN-AS1 Phase 1 Study: Key Eligibility Criteria

Part A and B Inclusion
- Male or female, ages 18-65 years
- Acute intermittent porphyria (AIP), with genetic diagnosis of HMBS mutation
- Urine PBG > 4 mmol/mol creatinine at screening

Part A and B Exclusion
- Attack* within 6 months of screening
- Heme use in past 6 months
- Subjects with new prescription medication regimen within 3 months of screen

Part C Only Inclusion
- Experienced at least 2 porphyria attacks in past 6 months or on heme prophylaxis to prevent attacks
- If on heme prophylaxis, willing to stop during study

*Attack definition: intense abdominal or back pain requiring hospitalization, heme use or treatment consisting of increased carbohydrate intake or pain medication
ALN-AS1 Phase 1 Study Progress

Part A: Single-Ascending Dose (SAD) | Randomized 3:1, Single-blind, Placebo-controlled in ASHE

- 0.035 mg/kg x 1 SC, N=4
- 0.10 mg/kg x 1 SC, N=4
- 0.35 mg/kg x 1 SC, N=4
- 1.0 mg/kg x 1 SC, N=4
- 2.5 mg/kg x 1 SC, N=4

*The 0.035 mg/kg SAD cohort was dosed after the 0.10 and 0.35 mg/kg cohorts.

Part B: Multiple-Ascending Dose (MAD) | Randomized 3:1, Single blind, Placebo-controlled in ASHE

- 0.35 mg/kg, qMx2 SC, N=4
- 1.0mg/kg, qMx2 SC, N=4

Part C: Multiple-Dose (MD) | Randomized 3:1, Double-blind, Placebo-controlled in AIP patients with recurrent attacks

- Run-in Observation (1 to 6 months)
- Cohort 1 N=4
- Cohort 2 N=4
- Cohort 3 N=4

ongoing
ALN-AS1 Phase 1 Study Part A and Part B
Demographics and Baseline Disease Characteristics

<table>
<thead>
<tr>
<th>Part A and B</th>
<th>Characteristic</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Patients</td>
<td>N=23* (ALN-AS1:Placebo=21:7)</td>
</tr>
<tr>
<td></td>
<td>Median Age (range)</td>
<td>47 years (30-64)</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>18 Females, 5 Males</td>
</tr>
<tr>
<td></td>
<td>Race n</td>
<td>22 White/Caucasian, 1 Asian</td>
</tr>
<tr>
<td></td>
<td>Genotype (n)</td>
<td>8 different mutations identified**:
• HMBS_593G>A (13)
• HMBS_87+1G>A (4)
• HMBS_499-1G>A (1)
• HMBS_517C>T (1)
• HMBS_647G>A (1)
• HMBS_847_848delTG (1)
• 673C>T variant exon 11 (1)
• Exon 3 shift IVS3+1G>T (1)</td>
</tr>
<tr>
<td></td>
<td>Mean baseline ALA (range)</td>
<td>11.0 mmol/mol Cr (2.9-24.6) ^</td>
</tr>
<tr>
<td></td>
<td>Mean baseline PBG (range)</td>
<td>22.0 mmol/mol Cr (4.5-50.5) ^</td>
</tr>
</tbody>
</table>

*5 subjects had >1 treatment assignment: 2 subjects repeated Part A; 3 subjects enrolled in Part A and Part B
** 3 mutations added to database post data cut and W198X collapsed into HMBS_593G>A

Data in database as of 28 Jun 2016

Sardh: A Randomized, Placebo Controlled, Phase 1 Study of ALN-AS1, Sep 07 2016
Part A (SAD) and Part B (MAD) Safety and Tolerability

ALN-AS1 was generally well-tolerated in Parts A and B of Study ALN-AS1-001

No drug-related SAEs or discontinuations due to AEs

- Two SAD subjects (0.035 and 0.10 mg/kg dose groups) were hospitalized for SAE of “abdominal pain”. Both events were assessed as unlikely related to ALN-AS1 by the investigators
- One MAD subject (1 mg/kg dose group) experienced a miscarriage 7 weeks post-conception (90 days post-ALN-AS1) during the extended follow-up period which was assessed as unlikely related by the investigator

SAD: Total of 49 AEs reported (10 AEs in 5 PBO subjects; 39 AEs in 11 ALN-AS1 subjects)

- All AEs were mild or moderate in severity with the exception of one severe AE of abdominal pain (same subject noted above with SAE at 0.10 mg/kg dose).
- AEs reported in ≥2 subjects were abdominal pain, diarrhea, and hypoesthesia
- 8 related or possibly related AEs were reported in 5 subjects
 - Diarrhea, dyspepsia, hematochezia, hypoesthesia, injection site erythema, injection site pain, decreased GFR and elevated Cr
- Injection site reactions (erythema and pain) were seen in 2 subjects—both mild and transient

MAD: Total of 29 AEs reported (4 AEs in 1 PBO subject; 25 AEs in 6 ALN-AS1 subjects)

- All reported AEs were mild or moderate in severity
- AEs reported in ≥2 subjects were nasopharyngitis and rash
- 8 related or possibly related AEs were reported in 3 subjects
 - Pruritus only (1 subject), rash only (1 subject) and pruritus and rash (1 subject)
- No injection site reactions were reported

No clinically significant changes in vital signs, EKG, clinical laboratory or physical examination

All Safety Data in database as of 28 Jun 2016 with the exception of the MAD SAE which was as of 03 Sept 2016
ALN-AS1 Phase 1 Study Interim Results
SAD Pharmacodynamic Data: Serum ALAS1 mRNA by cERD

ALAS1 mRNA induced approximately 3-fold in ASHE compared to normal healthy volunteers

Rapid, dose-dependent, and durable ALAS1 mRNA lowering after single dose
• 64 ± 1% mean (SEM) maximal reduction in 2.5 mg/kg dose group
• Remaining ALAS1 mRNA levels after highest dose similar to levels in normal healthy individuals

Data in database as of 28 Jun 2016
ALN-AS1 Phase 1 Study Interim Results
SAD Pharmacodynamic Data: Urinary ALA and PBG

Rapid, dose-dependent, and durable ALA and PBG lowering after single dose
- Mean (SEM) maximal reduction in 2.5 mg/kg group: 86± 2% (ALA) and 95± 0.4% (PBG)
- Prolonged ALA and PBG lowering with single dose supporting monthly or quarterly dosing
- Normalization of ALA/PBG achieved at higher dose levels

Excluding subject 201-0002, Day 0: 0-6 hour ALA measurement

Data in database as of 28 Jun 2016

Data Assay URL: < 3.9 or 3.8 mmol/mol Cr at sites 101 or 201
PBG Assay URL: < 1.6 or 1.5 mmol/mol Cr at sites 101 or 201
ALN-AS1 Phase 1 Study Interim Results
SAD: Changes in Serum ALAS1 mRNA and Urinary ALA/PBG Highly Correlated

ALAS1 mRNA vs ALA

- Percent Change Normalized ALAS1 mRNA (SERUM)
- Regression Line
- SAD Placebo
- 0.035 mg/kg ALN-AS1
- 0.10 mg/kg ALN-AS1
- 0.35 mg/kg ALN-AS1
- 1.0 mg/kg ALN-AS1
- 2.5 mg/kg ALN-AS1

R² = 0.79, p<0.001

ALAS1 mRNA vs PBG

- Percent Change Normalized ALAS1 mRNA (SERUM)
- Regression Line
- SAD Placebo
- 0.035 mg/kg ALN-AS1
- 0.10 mg/kg ALN-AS1
- 0.35 mg/kg ALN-AS1
- 1.0 mg/kg ALN-AS1
- 2.5 mg/kg ALN-AS1

R² = 0.87, p<0.001

Data in database as of 28 Jun 2016

Sardh: A Randomized, Placebo Controlled, Phase 1 Study of ALN-AS1, Sep 07 2016
ALN-AS1 Phase 1 Study Interim Results
MAD Pharmacodynamic Data: Serum ALAS1 mRNA by cERD

Rapid, dose-dependent, and durable ALAS1 mRNA lowering
• 54 ± 2% mean (SEM) maximal reduction relative to baseline in 1.0 mg/kg dose group
• ALAS1 mRNA reduction seen with 2 doses similar to single dose

Data in database as of 28 Jun 2016
Rapid, dose-dependent, and durable ALA and PBG lowering after multiple doses

- Mean (SEM) maximal reduction in 1 mg/kg group: 84 ± 2% (ALA) and 89 ± 5% (PBG)
- Multiple doses without additive effect in either dose group
- Normalization of ALA/PBG achieved at higher dose levels

ALN-AS1 Phase 1 Study Interim Results

MAD Pharmacodynamic Data: Urinary ALA and PBG

ALA

- MAD Placebo (N=2)
- 0.35 mg/kg ALN-AS1 (N=3)
- 1.0 mg/kg ALN-AS1 (N=3)

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>ALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>1/2</td>
</tr>
<tr>
<td>0.35</td>
<td>1/3</td>
</tr>
<tr>
<td>1.0</td>
<td>3/3</td>
</tr>
</tbody>
</table>

PBG

- MAD Placebo (N=2)
- 0.35 mg/kg ALN-AS1 (N=3)
- 1.0 mg/kg ALN-AS1 (N=3)

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>PBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0/2</td>
</tr>
<tr>
<td>0.35</td>
<td>0/2</td>
</tr>
<tr>
<td>1.0</td>
<td>2/3</td>
</tr>
</tbody>
</table>

Data in database as of 28 Jun 2016

ALA Assay URL: < 3.9 or 3.8 mmol/mol Cr at sites 101 or 201

PBG Assay URL: < 1.6 or 1.5 mmol/mol Cr at sites 101 or 201
ALN-AS1 Phase 1 Study Initial Results

Summary

ALN-AS1 generally well tolerated with single or multiple (2) doses
- No drug-related SAEs or discontinuations due to AEs
- No dose-dependent AEs or clinically significant changes in vital signs, EKG, clinical laboratory or physical examination

Non-invasive cERD assay to quantify liver ALAS1 mRNA expression demonstrated
- ASHE have 3-fold ALAS1 mRNA induction compared to normal healthy individuals
- Rapid, dose-dependent, and durable ALAS1 mRNA lowering with single and multiple doses of ALN-AS1; highly correlated with changes in ALA and PBG
 - 64% with a single 2.5 mg/kg dose and 54% with multiple 1.0 mg/kg doses

Rapid, dose-dependent, and durable lowering of urinary ALA and PBG with single and multiple doses of ALN-AS1
- 86% and 95%, respectively, with a single 2.5 mg/kg dose
- 84% and 89%, respectively with multiple 1.0 mg/kg doses

Next Steps
- Part A/B, (SAD/MAD) continue to monitor ALA, PBG and ALAS1 recovery
- Part C, MD portion in recurrent attack patients ongoing in Sweden, UK and US

Data in database as of 28 Jun 2016
Acknowledgements

Phase 1 Investigators

Part A, B and C
- Eliane Sardh
- Nabil AL-Tawil
- Pauline Harper
- David Rees
- Penelope Stein

Part C
- Manisha Balwani
- Herb Bonkovsky
- Karl Anderson
- Monty Bissell
- Joseph Bloomer
- Charles Parker
- John Phillips

American Porphyria Foundation
- Desiree Lyon
- Jessica Hungate

Mount Sinai
- Hetanshi Naik
- Robert Desnick

Karolinska University Hospital
- Daphne Vassiliou
- Kulliki Saar
- Oskar Fagerlund
- Ylva Floderus

Karolinska Trial Alliance KTA
- Erla Sigurdardottir
- Asa Lindé
- Cecilia Lång
- Anneli Wahlberg
- Margareta Gustafsson

King College Hospital
- Victor Jardim
- Lorainne Catt
- Vineela Mandadapu
- Joanne Marsden

Alnylam (Study Sponsor)
- Amy Simon
- Craig Penz
- Bill Querbes
- Amy Chan
- Jen Nielsen
- Chang-Heok Soh
- Jeffrey Moffit
- Lauri Binne
- Jason Costigan
- Satya Kuchimanchi
- Anshul Gupta
- Rena Denoncourt

The AIP patients who participated In this Phase 1 Study

Sardh: A Randomized, Placebo Controlled, Phase 1 Study of ALN-AS1, Sep 07 2016