Phase 1/2, Randomized, Placebo Controlled and Open Label Extension Studies of Givosiran, an Investigational RNA Interference (RNAi) Therapeutic, in Patients with Acute Intermittent Porphyria

Eliane Sardh, MD, PhD^{1,2}, Pauline Harper, MD, PhD^{1,2}, Manisha Balwani, MD³, Penelope Stein, MD, PhD⁴, David Rees, MD⁴, Joseph Bloomer, MD⁵, D. Montgomery Bissell, MD⁶, Robert Desnick, MD, PhD³, Charles Parker, MD⁷, John Phillips, PhD⁷, Herbert Bonkovsky, MD⁸, Nabil Al-Tawil, MD^{1,9}, Stephanie Rock, PhD¹⁰, Craig Penz, MA¹⁰, Amy Chan, PhD¹⁰, Qiuling He, PhD¹⁰, William Querbes, PhD¹⁰, Amy Simon, MD¹⁰ and Karl Anderson, MD¹¹

¹Karolinska University Hospital, Karolinska Institutet; ²Porphyria Centre Sweden, Stockholm, Sweden; ³Icahn School of Medicine at Mount Sinai, New York, NY; ⁴King's College Hospital, London, United Kingdom; ⁵University of Alabama, Birmingham, AL; ⁶University of California, San Francisco, CA; ⁷University of Utah, Salt Lake City, UT; ⁸Wake Forest University, Winston-Salem, NC; ⁹Karolinska Trial Alliance Phase 1 Unit; ¹⁰Alnylam Pharmaceuticals, Cambridge, MA; ¹¹University of Texas Medical Branch, Galveston, TX

14 April 2018 | EASL | Paris, France

Disease Overview

Acute Hepatic Porphyrias (AHPs)^{1,2}

- Inborn errors of heme synthesis from liver enzyme defects
- Acute Intermittent Porphyria (AIP) most common, with a mutation in hydroxymethylbilane synthase (HMBS)

Disease Pathophysiology

- Induction of ALAS1 leads to accumulation of neurotoxic heme intermediates ALA/PBG
- ALA believed to be primary neurotoxic intermediate that causes disease manifestations

Attacks and Chronic Manifestations

- Autonomic Nervous System
 - Severe abdominal pain, hypertension
- Central Nervous System
 - Mental status changes, seizures
- Peripheral Nervous System
 - Muscle weakness, paralysis

Therapeutic Hypothesis for Givosiran, an Investigational RNAi Therapeutic for AHPs

Reduction of Liver ALAS1 Protein to Lower ALA and PBG

Phase 1 and Open-Label Extension (OLE) Study Design

Parts A & B in Chronic High Excreter (CHE) Patients[†]

- Randomized 3:1 (givosiran:placebo), single blind design
- · Genetic confirmation of AIP
- Urine PBG level >4 mmol/mol Cr
- No attacks within 6 months of study drug

Part C and OLE in Recurrent Attack Patients

- Randomized 3:1 (givosiran:placebo), double-blind design
- Genetic confirmation of AIP
- Observational run-in (3 month) without scheduled hemin
- ≥2 attacks in past 6 months OR on prior hemin prophylaxis. One attack in run-in required for randomization
- Patients completing Part C eligible to enroll in OLE

Part C (6 months)	OLE (up to 42 months) [‡]		
2.5 mg/kg q3M x 2, N=4	5.0 mg/kg q3M $ ightarrow$ 2.5 mg/kg qM, N=4		
5.0 mg/kg q3M x 2, N=5	2.5 mg/kg qM, N=5		
2.5 mg/kg qM x 4, N=4	2.5 mg/kg qM, N=4		
5.0 mg/kg qM x 4, N=	=4 5.0 mg/kg qM \rightarrow 2.5 mg/kg qM, N=3		

Clinicaltrials.gov: NCT02452372. AIP, Acute Intermittent Porphyria. PBG; Porphobilinogen. Cr; Creatinine. qM; Monthly. q3M; Quarterly. [†]2 patients participated twice in Part A and 3 patients participated in both Part A and Part B [‡]All patients in OLE transitioned to 2.5 mg/kg qM; Safety Review Committee authorization before all dose escalations

4

Demographics and Baseline Characteristics

	Parts A & B	Part C	
	(N=23 [†])	Placebo (N=4)	Givosiran (N=13)
Age, years, median (range)	47 (30–64)	42 (27–60)	36 (21–59)
Female, n (%)	18 (78)	2 (50)	13 (100)
Weight, kg, mean (SD)	75.9 (15.9)	91.4 (20.8)	70.9 (14.5)
Race, n (%)			
White/Caucasian	22 (96)	4 (100)	10 (77)
Asian	1 (4)	0 (0)	1 (8)
Black/African American	0 (0)	0 (0)	2 (15)
Prior porphyria therapy, n (%)			
Hemin prophylaxis		2 (50)	6 (46)
GnRH analogue use	NA	0 (0)	4 (31)
Chronic opioid use		2 (50)	7 (54)
Porphyria attacks in past 12 months, median (range)	NA	10.0 (5–50)	9.0 (0–36)
ALA, mmol/mol Cr, mean (SEM) [‡]	23.1 (3.1)	43.1 (9.8)	37.8 (6.5)
PBG, mmol/mol Cr, mean (SEM) [‡]	24.8 (3.6)	39.2 (4.6)	38.9 (5.8)
ALAS1 mRNA, fold relative to normal, mean (SEM)	2.4 (0.2)	2.8 (0.3)	3.7 (0.3)

[†]2 patients participated twice in Part A and 3 patients participated in both Part A and Part B [‡]Upper Limit of Normal: ALA<3.9 or 3.8 mmol/mol Cr; PBG<1.6 or 1.5 mmol/mol Cr (site dependent) SD; Standard deviation. GnRH; Gonadotropin-releasing hormone. Cr; Creatinine. ALA; δ-Aminolevulinic acid. PBG; Porphobilinogen. SEM; Standard error of mean. ALAS1; ALA synthase 1.

Safety and Tolerability

Phase 1 Study Results

Patients Reporting Adverse Event, N (%)	Parts A & B		Part C		
	Placebo (N=6)	Givosiran (N=20)	Placebo (N=4)	Givosiran (N=13)	
Any adverse event	6 (100)	17 (85)	4 (100)	13 (100)	
Serious adverse event	0	3 (15)	0	3 (23)	
Most common adverse events (occurring in >2 patients)					
Abdominal pain	0	2 (10)	1 (25)	6 (46)	
Nasopharyngitis	1 (17)	4 (20)	1 (25)	5 (39)	
Nausea	0	0	1 (25)	5 (39)	
Back pain	0	0	0	3 (23)	
Injection site reaction	0	0	0	3 (23)	
Vomiting	0	0	2 (50)	3 (23)	
Rash	0	3 (15)	0	0	

- 6 patients with SAEs, with none assessed as related to study drug
 - Part A: 2 patients (0.035 and 0.10 mg/kg) had abdominal pain requiring hospitalization
 - Part B: 1 patient (1 mg/kg) had miscarriage 7 weeks post-conception and 90 days postdose
 - Part C: 3 patients
 - 1 patient (2.5 mg/kg qM) had opioid bowel dysfunction
 - 1 patient (5 mg/kg q3M) had influenza infection
 - 1 patient (5 mg/kg qM) had bacteremia from portacath, associated with auditory hallucinations. Patient subsequently had fatal hemorrhagic pancreatitis, assessed as unlikely related to study drug due to presence of gallbladder sludge (previously reported)
- No other discontinuations due to AEs or other clinically significant changes in EKG, clinical laboratory or physical examination
- Review of AEs reveals no clear relationship to dose

Rapid, Dose-Dependent, and Durable ALAS1 mRNA Silencing After Givosiran Dosing

Phase 1 Study Results in Recurrent Attack Patients

Approximately 60-70% ALAS1 mRNA silencing with monthly dosing

ALAS1; ALA synthase 1. SEM; Standard error of mean. qM; Monthly. q3M; Quarterly. *Determined by Circulating Extracellular RNA Detection (cERD)

Dose-Dependent Lowering of ALA and PBG After Givosiran Dosing

Phase 1 Study Results in Recurrent Attack Patients

- Monthly dosing led to consistent and sustained lowering of ALA and PBG of >80%
- Increasing monthly dose from 2.5 mg/kg to 5.0 mg/kg did not lead to further lowering

Givosiran Treatment Led to Decreased Annualized Attack Rates (AAR) and Decreased Hemin Use

Phase 1 Study Results in Recurrent Attack Patients

Monthly dosing led to greater mean reductions in AAR (up to 83%) and annualized hemin use (up to • 88%) relative to placebo

ALA Lowering is Correlated with Reductions in AAR

Phase 1 Study Results in Recurrent Attack Patients

Continuous relationship between AAR and ALA lowering

ALA; δ-Aminolevulinic acid. SEM; Standard error of mean. AAR; Annualized attack rate. [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home

Safety and Tolerability

Interim Phase 1/2 OLE Study Results

- 15/16 (94%) patients reported AEs
- 2 patients with SAEs
 - 1 patient (5.0 mg/kg q3M) with upper extremity DVT, assessed as unlikely related to study drug due to prior indwelling central venous catheter and venous damage from chronic hemin usage
 - 1 patient (2.5 mg/kg qM) with anaphylactic reaction*, assessed as definitely related to study drug
 - Occurred after third dose of givosiran (first dose in OLE at 2.5 mg/kg); patient previously received two doses (5 mg/kg q3M) in Phase 1 study
 - Past history of asthma, oral allergy syndrome, and prior allergic reactions to acne cream and possibly latex gloves
 - Event resolved with medical management, and patient discontinued from study
- AEs in >3 patients: abdominal pain, nausea, injection site erythema, headache, injection site pruritus, fatigue, nasopharyngitis
- No clinically significant increases in LFTs or lipase with ongoing dosing

Clinical Activity Maintained in Givosiran Treated Patients with Extended Dosing in OLE Study

Phase 1 and Interim OLE Study Results in Recurrent Attack Patients

- Mean time in OLE of 10.6 months, with up to 22 months of total treatment in Phase 1 and OLE •
- Continuous dosing at 2.5 mg/kg monthly regimen in OLE (all patients transitioned to 2.5 mg/kg gM) potentially leads to • enhanced clinical activity
- ALA and PBG lowering >80% maintained with continued dosing in OLE •
- Mean reductions in AAR of 93% and annualized hemin use of 94% observed in OLE relative to Phase 1 Run-in
- 5/12 (42%) patients with AAR = 0, for a mean of 7.4 months •

Data as of 26Feb2018. OLE; Open-label extension. AAR; Annualized attack rate. [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home. *Aggregated across all dose groups. Mean time in Phase 1 Run-in and Treatment of 103 days and 165 days, respectively; mean time in OLE of 322 days.

Annualized Hemin Doses

Clinical Activity Demonstrated in Placebo Patients Crossing Over to Givosiran Treatment in OLE

Phase 1 and Interim OLE Study Results in Recurrent Attack Patients

- Upon crossing over to givosiran in OLE, prior Phase 1 placebo patients experienced >90% mean reduction in AAR and annualized hemin use relative to both Phase 1 Run-in and Treatment periods
- 2/4 (50%) patients with AAR = 0, for a mean of 11.2 months

Annualized Attack Rate[†]

Annualized Hemin Doses

Data as of 26Feb2018. OLE; Open-label extension. AAR; Annualized attack rate. [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home Mean time in Phase 1 Run-in and Treatment of 77 days and 175 days, respectively; mean time in OLE of 316 days

- In Phase 1 study, givosiran lowered induced ALAS1, with corresponding reductions in both ALA and PBG, and reduced attacks and hemin use in recurrent attack patients
- Dose regimen of 2.5 mg/kg qM was selected for OLE and further clinical development
- Interim Phase 1/2 OLE study results demonstrate maintenance, and potentially enhancement, of clinical activity with continuous monthly dosing
- Clinical activity and safety profile support continued clinical development
- ENVISION Phase 3 study in patients with AHPs is enrolling

Acknowledgements

Thank you to the patients, investigators, and study staff who participated in these studies

Investigators	Institution	Location
Eliane Sardh Pauline Harper Daphne Vassiliou	Karolinska University Hospital	Stockholm, SE
David Rees Penelope Stein	King's College Hospital	London, UK
Manisha Balwani	Mt. Sinai Icahn School of Medicine	New York, NY
Karl Anderson	University of Texas Medical Branch	Galveston, TX
Joseph Bloomer Ashwani Singal	University of Alabama, Birmingham	Birmingham, AL
Montgomery Bissell Bruce Wang	University of California, San Francisco	San Francisco, CA

