# Evaluation of Quality of Life and Disability in Patients with Hereditary Transthyretin-Mediated (hATTR) Amyloidosis with Polyneuropathy Following Treatment with Patisiran, an Investigational RNAi Therapeutic: Results from the Phase 3 APOLLO Study

<u>D Adams¹</u>, A González-Duarte², W O'Riordan³, CC Yang⁴, T Yamashita⁵, A Kristen⁶, I Tournevⁿ, H Schmidt⁶, T Coelho⁶, JL Berk¹⁰, KP Lin¹¹, PJ Dyck¹², P Gandhi¹³, M Sweetser¹³, J Chen¹³, J Gollob¹³, and OB Suhr¹⁴

<sup>1</sup>National Reference Center for FAP (NNERF)/ APHP/ INSERM U 1195/ CHU Bicêtre, Le Kremlin-Bicêtre, France; <sup>2</sup>National Institute of Medical Sciences and Nutrition, Salvador Zubiran (INCMNSZ), Mexico City, Mexico; <sup>3</sup>eStudy Site, La Mesa, USA; <sup>4</sup>National Taiwan University Hospital, Taipei, Taiwan; <sup>5</sup>Kumamoto University Hospital, Kumamoto, Japan; <sup>6</sup>Heidelberg University Hospital, Heidelberg, Germany; <sup>7</sup>University Multiprofile Hospital for Active Treatment, Sofia, Bulgaria; <sup>8</sup>University Hospital Muenster, Muenster, Germany; <sup>9</sup>Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal; <sup>10</sup>Amyloid Treatment and Research Program, Boston University, Boston; USA; <sup>11</sup>Taipei Veterans General Hospital, Taipei, Taiwan; <sup>12</sup>Mayo Clinic Hospital, Rochester, USA; <sup>13</sup>Alnylam Pharmaceuticals, Cambridge, USA; <sup>14</sup>Umeå University Hospital, Umeå, Sweden



## **Hereditary ATTR (hATTR) Amyloidosis**

Disease Overview and Introduction to Patisiran, an Investigational RNAi Therapeutic

#### hATTR Amyloidosis

- Rare, inherited, rapidly progressive, debilitating, life-threatening, often fatal disease caused by mutations in transthyretin (TTR) gene resulting in misfolded TTR protein accumulating as amyloid fibrils in nerves, heart, and gastrointestinal tract<sup>1-5</sup>
- Median survival 4.7 years following diagnosis<sup>6</sup>; reduced survival (3.4 years) for patients presenting with cardiomyopathy<sup>6-8</sup>
- Multisystem disease with heterogeneous clinical presentation that includes sensory and motor, autonomic and cardiac symptoms<sup>2,9,10</sup>
  - Disease continuum includes patients who present with predominantly polyneuropathy symptoms (formerly FAP) or cardiomyopathy symptoms (formerly FAC), yet many patients experience a variety of symptoms
    - Clinical manifestations (e.g., disease penetrance and rate of progression) is influenced by TTR genotype and geographical region

#### Limited treatment options

- Liver transplant for early-stage disease and TTR tetramer stabilizers
  - Tafamidis approved in EU for Stage 1 hATTR amyloidosis<sup>11</sup> and certain other countries outside U.S.
  - Diflunisal (generic NSAID) showed positive Phase 3 data in NIH-sponsored study<sup>12</sup>
- Continued high unmet medical need for novel therapeutics

#### Patisiran, an Investigational RNAi Therapeutic

 Lipid nanoparticle formulated RNAi, administered by IV infusion, targeting hepatic production of mutant and wild-type TTR

#### Patisiran Therapeutic Hypothesis





## Patisiran Phase 3 APOLLO Study Design



†Stratification factors for randomization include: neuropathy impairment score (NIS: < 50 vs. ≥ 50), early onset V30M (< 50 years of age at onset) vs. all other mutations (including late onset V30M), and previous tetramer stabilizer use (tafamidis or diflunisal) vs. no previous tetramer stabilizer use

\*To reduce likelihood of infusion-related reactions, patients receive following premedication or equivalent at least 60 min before each study drug infusion: dexamethasone; oral acetaminophen/paracetamol; H2 blocker (e.g., ranitidine or famotidine); and H1 blocker (e.g., diphenhydramine).

Patients who completed study were eligible for patisiran treatment on Global OLE Study (NCT02510261)



# **Patisiran Phase 3 APOLLO Study Endpoints**

#### **Primary Endpoints**

- mNIS+7: a composite measure of neurological impairment
  - Higher score indicates worsening of neuropathy

#### **Select Secondary Endpoints**

- Norfolk QOL-DN: 35-item QOL questionnaire that is sensitive to small fiber, large fiber, and autonomic nerve function
  - Higher score indicates worsening of QOL
- R-ODS: 24-item questionnaire used to capture activity and social participation (disability)
  - Lower score indicates worsening disability
- 10-meter walk test (m/sec): assessment of ambulation that measures gait speed
  - Lower score indicates worsening
- **COMPASS 31:** 31-item questionnaire used to evaluate patient reported autonomic neuropathy symptoms
  - Higher score indicates worsening of autonomic neuropathy symptoms

#### **Select Exploratory Endpoints**

- EQ-5D-5L: 5-item standardized instrument to measure quality of life
  - Lower score indicates worsening of QOL
- EQ-VAS: assessment of patient's own global impression of their overall health
  - Lower score indicates worsening of QOL





#### Baseline Demographics and Disease Characteristics

| Demographic, n (%)                           | Placebo<br>(N=77) | Patisiran<br>(N=148) |
|----------------------------------------------|-------------------|----------------------|
| Median Age, years (range)                    | 63 (34, 80)       | 62 (24, 83)          |
| Gender, males                                | 58 (75.3)         | 109 (73.6)           |
| Race <sup>†</sup>                            |                   |                      |
| Asian                                        | 25 (32.5)         | 27 (18.2)            |
| Black/African or African American            | 1 (1.3)           | 4 (2.7%)             |
| White/Caucasian                              | 50 (64.9)         | 113 (76.4)           |
| Region*                                      |                   |                      |
| North America                                | 10 (13.0)         | 37 (25.0)            |
| Western Europe                               | 36 (46.8)         | 62 (41.9)            |
| Rest of World                                | 31 (40.3)         | 49 (33.1)            |
| hATTR Diagnosis                              |                   |                      |
| Years since hATTR diagnosis, mean (min, max) | 2.60 (0.0, 16.5)  | 2.39 (0.0, 21.0)     |
| TTR Genotype                                 |                   |                      |
| V30M                                         | 40 (51.9)         | 56 (37.8)            |
| nonV30M <sup>‡</sup>                         | 37 (48.1)         | 92 (62.2)            |
| Previous tetramer stabilizer use             | 41 (53.2)         | 78 (52.7)            |
|                                              |                   |                      |

| Disease Characteristics, n (%)                            | Placebo<br>(N=77) | Patisiran<br>(N=148) |
|-----------------------------------------------------------|-------------------|----------------------|
| NIS                                                       |                   |                      |
| Mean (min, max)                                           | 57.0 (7.0, 125.5) | 60.5 (6.0, 141.6)    |
| <50                                                       | 35 (45.5)         | 62 (41.9)            |
| <u>≥</u> 50 - <100                                        | 33 (42.9)         | 63 (42.6)            |
| <u>≥</u> 100                                              | 9 (11.7)          | 23 (15.5)            |
| FAP Stage                                                 |                   |                      |
| 1: unimpaired ambulation                                  | 37 (48.1)         | 67 (45.3)            |
| 2: assistance with ambulation required                    | 39 (50.6)         | 81 (54.7)            |
| 3: wheelchair bound or bedridden                          | 1 (1.3)           | 0                    |
| PND Score                                                 |                   |                      |
| I: preserved walking, sensory disturbances                | 20 (26.0)         | 36 (24.3)            |
| II: impaired walking but can walk without stick or crutch | 23 (29.9)         | 43 (29.1)            |
| IIIa: walk with 1 stick or crutch                         | 22 (28.6)         | 41 (27.7)            |
| IIIb: walk with 2 sticks or crutches                      | 11 (14.3)         | 28 (18.9)            |
| IV: confined to wheelchair or bedridden                   | 1 (1.3)           | 0                    |
| Cardiac Subpopulation <sup>♯</sup>                        | 36 (46.8)         | 90 (60.8)            |

Blue, bolded text indicated >10% difference in either group

†Other, patisiran N=1 (0.7%); More than one race, patisiran N=2 (1.4%); missing N=1 each for placebo (1.3%) and patisiran (0.7%)

<sup>\*</sup>North America: USA, CAN; Western Europe: DEU, ESP, FRA, GBR, ITA, NLD, PRT, SWE; Rest of world: Asia: JPN, KOR, TWN, Eastern Europe: BGR, CYP, TUR; Central & South America: MEX, ARG, BRA ‡Represents 38 different TTR mutations





mNIS+7: Change from Baseline

**56.1%** of patients in the patisiran group demonstrated improvement in mNIS+7 compared to 3.9% of patients on placebo (Odds ratio: 39.9; p=1.82 x 10<sup>-15</sup>; improvement defined as <0 point increase from baseline to 18 months)





Norfolk QOL-DN: Change from Baseline

51.4% of patients in the patisiran group demonstrated improvement in Norfolk QOL-DN compared to 10.4% of patients on placebo

(Odds ratio: 10.0;  $p=1.95 \times 10^{-10}$ ; improvement defined as <0 point increase from baseline to 18 months)





#### Norfolk QOL-DN: Change from Baseline in Individual Domains

Patisiran demonstrated improvement across all domains of the Norfolk QOL-DN





#### EQ-5D-5L and EQ-VAS: Change from Baseline

• Overall, patients in the patisiran group consistently improved their quality of life as measured by EQ-5D-5L and EQ-VAS compared with placebo at 18 months; this improvement was evident as early as 9 months





#### R-ODS: Change from Baseline

 Patisiran demonstrated a significant improvement in disability at 18 months compared to placebo and nominal significance as early as 9 months





#### 10-MWT: Change from Baseline to Month 18

 Patients in the patisiran group demonstrated a significant improvement in gait speed compared to placebo; this improvement in gait speed was evident as early as 9 months





#### COMPASS 31: Change from Baseline in Individual Domains

• Statistically significant improvement in autonomic neuropathy symptoms at 18 months for patients in the patisiran group compared to the placebo group



| Secondary endpoint; LS Mean |                      | Placebo<br>(N=77) | Patisiran<br>(N=148) | Treatment Difference<br>(Pati - PBO) | P-Value |
|-----------------------------|----------------------|-------------------|----------------------|--------------------------------------|---------|
| COMPASS 31                  | Baseline score, mean | 30.31             | 30.61                |                                      |         |
|                             | CFB to 18 mos        | 2.24              | -5.29                | -7.53                                | 0.0008  |



#### Safety and Tolerability

| Type of Adverse Event, number of patients (%) | Placebo<br>(N=77) | Patisiran<br>(N=148) |
|-----------------------------------------------|-------------------|----------------------|
| Adverse event (AE)                            | 75 (97.4)         | 143 (96.6)           |
| Severe AE                                     | 28 (36.4)         | 42 (28.4)            |
| Serious adverse event (SAE)                   | 31 (40.3)         | 54 (36.5)            |
| AE leading to treatment discontinuation       | 11 (14.3)         | 7 (4.7)              |
| AE leading to study withdrawal                | 9 (11.7)          | 7 (4.7)              |
| Death                                         | 6 (7.8)           | 7 (4.7)              |

Overall, 13 deaths in APOLLO study; no deaths considered related to study drug

• Causes of death (e.g., cardiovascular, infection) consistent with natural history; frequency of death trended lower in the patisiran group compared with placebo group

Majority of AEs were mild or moderate in severity

- · Peripheral edema
  - o Did not result in any treatment discontinuations and decreased over time
- Infusion-related reactions (IRRs)
  - Majority mild in severity that decreased over time; led to treatment discontinuation in
    1 patient
  - No severe, life-threatening or serious IRRs

No safety signals regarding cataracts, hyperglycemia, infection, or osteopenia/osteoporosis

No safety signals regarding liver function tests, hematology including thrombocytopenia, or renal dysfunction related to patisiran

Safety in cardiac subpopulation comparable to overall study population

#### **Adverse Events Occurring in ≥ 10% in Either Group**

| Preferred AE Term, number of patients (%) | Placebo<br>(N=77) | Patisiran<br>(N=148) |
|-------------------------------------------|-------------------|----------------------|
| Diarrhea                                  | 29 (37.7)         | 55 (37.2)            |
| Edema, peripheral                         | 17 (22.1)         | 44 (29.7)            |
| Infusion related reaction (IRR)           | 7 (9.1)           | 28 (18.9)            |
| Fall                                      | 22 (28.6)         | 25 (16.9)            |
| Constipation                              | 13 (16.9)         | 22 (14.9)            |
| Nausea                                    | 16 (20.8)         | 22 (14.9)            |
| Dizziness                                 | 11 (14.3)         | 19 (12.8)            |
| Urinary tract infection                   | 14 (18.2)         | 19 (12.8)            |
| Fatigue                                   | 8 (10.4)          | 18 (12.2)            |
| Headache                                  | 9 (11.7)          | 16 (10.8)            |
| Cough                                     | 9 (11.7)          | 15 (10.1)            |
| Insomnia                                  | 7 (9.1)           | 15 (10.1)            |
| Nasopharyngitis                           | 6 (7.8)           | 15 (10.1)            |
| Vomiting                                  | 8 (10.4)          | 15 (10.1)            |
| Asthenia                                  | 9 (11.7)          | 14 (9.5)             |
| Pain in Extremity                         | 8 (10.4)          | 10 (6.8)             |
| Muscular Weakness                         | 11 (14.3)         | 5 (3.4)              |
| Anemia                                    | 8 (10.4)          | 3 (2.0)              |
| Syncope                                   | 8 (10.4)          | 3 (2.0)              |

Blue, bolded text: Indicates ≥5 percentage point difference in either group



# **Patisiran Phase 3 APOLLO Study**

#### **Summary**

hATTR amyloidosis is a multisystem, progressive, debilitating, life-threatening, often fatal disease with limited therapeutic options

Patisiran treatment resulted in significant improvement in polyneuropathy relative to placebo

- Benefits seen in motor, sensory and autonomic neuropathy
- Positive effects observed across wide range of disease severity and TTR genotypes, including patients with cardiac involvement

Treatment with patisiran resulted in an improvement in QOL compared to placebo; treatment with patisiran demonstrated favorable impact on disability compared to placebo

- Patisiran treatment led to an improvement in Norfolk QOL-DN as well as EQ-5D-5L and EQ-VAS
- Decrease in autonomic symptoms and improvement in gait speed in patisiran-treated patients, thus potentially lessening the burden of disease

Patisiran showed an encouraging safety and tolerability profile

- Frequency of deaths trended lower in the patisiran group versus placebo arm
- Key patisiran safety findings include mild to moderate peripheral edema and IRRs with only one treatment discontinuation due to these events
- No safety signals with regard to thrombocytopenia, hepatic or renal dysfunction

99% of eligible APOLLO patients enrolled into Global OLE study



# **Acknowledgments**

# Thank you to the patients, their families, investigators, study staff and collaborators for their participation in the Phase 3 APOLLO study

#### **Study Investigators**

- · Adams, David: CHU Bicêtre, France
- · Ajroud-Driss, Senda: Northwestern University, USA
- Attarian, Shahram: Hôpital de La Timone, France
- · Barroso, Fabio: Instituto FLENI Montaneses, Argentina
- · Berk, John: Boston University, USA
- Brannagan, Thomas: Columbia University Medical Center, USA
- Buades Reines, Juan: Hospital Son Llatzer, Spain
- · Campistol, Joseph: Hospital Clinic, ICNU, Spain
- Coelho, Teresa: Hospital de Santo António, Portugal
- Conceicao, Isabel: Hospital de Santa Maria, Portugal
- Marques Junior, Wilson: Hospital das Clinicas da USP de Ribeirao, Brazil
- Dispenzieri, Angela: Mayo Clinic, USA
- Galan Davila, Lucia: Hospital Clinic San Carlos, Spain
- Gonzalez-Duarte, Alejandra: National Institute of Med Sciences, Mexico
- · Gorevic, Peter: Mount Sinai Medical Center, USA
- · Hazenberg, Bouke: UMC, Netherlands
- Ito, Mizuki: Nagoya University Hospital, Japan
- · Kim, Byoung-Joon: Samsung Medical Center, South Korea
- Kristen, Arnt: Heidelberg University Hospital, Germany
- · Kyriakides, Theodoros: CING, Cyprus
- Lin, Kon-Ping: Taipei Veterans General Hospital, Taiwan
- · Lopate, Glenn: Washington University School of Medicine Center, USA

#### **Study Collaborators**

• Peter Dyck: Mayo Clinic, USA

- Mezei, Michelle: Vancouver General Hospital, Canada
- Munoz Beamud, Francisco: Juan Ramon Jimenez Hospital, Spain
- Obici, Laura: Fondazione IRCCS Policlinico San Matte, Italy
- Oh, Jeeyoung: Konkuk University Hospital, South Korea
- O'Riordan, William: eStudy Site, USA
- · Parman, Yesim: Istanbul University, Turkey
- · Plante-Bordeneuve, Violaine: CHU Henri, France
- · Polydefkis, Michael: Johns Hopkins Bayview Medical Center, USA
- · Quan, Dianna: University of Colorado, Aurora, USA
- Sabatelli, Mario: Universita Cattolica del Sacro Cuore Institute of Neurology, Italy
- Schmidt, Hartmut: University Hospital of Muenster, Germany
- Sekijima, Yoshiki: Shinshu University Hospital, Japan
- Suhr, Ole: Umeå University Hospital, Sweden
- · Tard, Celine: CHRU de Lille, France
- Taubel, Jorg: St George's University of London, UK
- Tournev, Ivaylo: UMHAT Aleksandrovska, Bulgaria
- Tuchman, Sascha: Duke University Medical Center, USA
- Vita, Giuseppe: Policlinico Universitario, Italy
- Waddington-Cruz, Marcia: Hospital Universitario Clementino Fraga Filho, Brazil
- Yamashita, Taro: Kumamoto University Hospital, Japan
- Yang, Chih-Chao: National Taiwan University Hospital, Taiwan
- Zonder, Jeffrey: Karmanos Cancer Institute, USA

