Eighteen-Month Interim Analysis of Efficacy and Safety of Givosiran, an RNAi Therapeutic for Acute Hepatic Porphyria, in the ENVISION Open-Label Extension

David J. Kuter¹, Siobán Keel², Charles Parker³, David C. Rees⁴, Ulrich Stölzel⁵, Paolo Ventura⁶, Manisha Balwani⁷, Laurent Gouya⁸, Amy Simon⁹, Shangbin Liu⁹, John Ko⁹, Sean Rhyee⁹, Samuel Silver¹⁰

¹Massachusetts General Hospital, Boston, Massachusetts, USA; ²University of Washington, Seattle, Washington, USA; ³University of Utah, Salt Lake City, Utah, USA; ⁴King’s College Hospital, United Kingdom; ⁵Klinikum Chemnitz, Chemnitz, Germany; ⁶Università degli Studi di Modena e Reggio Emilia, Modena, Italy; ⁷Icahn School of Medicine at Mt. Sinai, New York, New York, USA; ⁸Centre Français des Porphyries, Paris, France; ⁹Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA; ¹⁰University of Michigan, Ann Arbor, Michigan, USA

This study was funded by Alnylam Pharmaceuticals
Editorial assistance was provided by Adelphi Communications Ltd, UK, funded by Alnylam Pharmaceuticals

December 5–8, 2020 || American Society of Hematology (ASH) Congress
**Background and Rationale**

**Acute Hepatic Porphyria (AHP)**
- Family of rare, genetic diseases due to a deficiency in one of the enzymes in heme biosynthesis in the liver\(^1,2\)
- Acute intermittent porphyria (AIP) is the most common type of AHP\(^3,4\)
- Delta-aminolevulinic acid synthase 1 (ALAS1) induction leads to accumulation of toxic intermediates δ-aminolevulinic acid (ALA) and porphobilinogen (PBG), thought to cause AHP manifestations\(^1,2,5\)

**Attacks, Chronic Manifestations, and Comorbidities**
- Acute neurovisceral attacks commonly manifest as severe abdominal pain and can be life-threatening\(^6,7\)
- Chronic debilitating symptoms can negatively impact daily functioning and QOL (quality of life)\(^6–8\)
- Comorbidities include hypertension, chronic kidney disease, and liver disease\(^3,6,9–11\)

**Unmet need for therapies to prevent attacks and chronic disease manifestations**

**Hemin**
- Hemin used to treat acute attacks and sometimes as off-label treatment to prevent attacks\(^7\)
  - Chronic hemin use often requires an indwelling central venous catheter, and can lead to iron overload\(^7,12\)

**Givosiran**
- Subcutaneously administered RNAi therapeutic that specifically targets ALAS1 messenger RNA in the liver to reduce disease-causing neurotoxic intermediates ALA and PBG
- Approved for treatment of AHP in adults in the US and adults and adolescents aged 12 years or older in the EU\(^13,14\)

---

ENVISION Study Design

- 94 patients with AHP enrolled in ENVISION at 36 sites in 18 countries
- All patients completed the 6-month double-blind (DB) period; all eligible patients (n=93) entered the 30-month open-label extension (OLE) period; here we present results from an 18-month interim analysis.a

<table>
<thead>
<tr>
<th>Key Inclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥12 years</td>
</tr>
<tr>
<td>Diagnosis of AHP</td>
</tr>
<tr>
<td>≥2 attacks within prior 6 months</td>
</tr>
<tr>
<td>Willing to discontinue and/or not initiate hemin prophylaxis</td>
</tr>
</tbody>
</table>

6-Month DB Period

Primary Endpoint
• Composite annualized attacks (AAR) requiring hospitalization, urgent healthcare visit, or hemin administration at home in AIP patients

Secondary Endpointsb
• ALA and PBG
• Hemin use
• AAR in AHP over 6 months
• Pain
• Fatigue
• Nausea
• SF-12 PCS

Selected Exploratory Endpoints
• PPEQ
• Analgesic use

30-Month OLE Periodc

Givosiran SC qM 2.5 mg/kg

1:1 Randomization

• Givosiran SC qM 2.5 mg/kg

• Placebo SC qM

Assignment

Givosiran SC qM 2.5 mg/kg

Givosirand SC qM 2.5 mg/kg

Givosiran SC qM 1.25 mg/kg

• AAR, annualized attack rate; AHP, acute hepatic porphyria; AIP, acute intermittent porphyria; ALA, δ-aminolevulinic acid; DB, double-blind; OLE, open-label extension; PBG, porphobilinogen; PGS, Physical Component Summary; PPEQ, Porphyria Patient Experience Questionnaire; qM, every month; SC, subcutaneously; SF-12, Short Form (12-item) Health Survey

aData from the timepoint after which all patients had completed at least their Month 18 visit (January 10, 2020). bEndpoints evaluated in patients with genetically confirmed AIP, unless otherwise noted, at 6 months. cA protocol amendment increased the dose of all patients to 2.5 mg/kg monthly.
Composite porphyria attacks are attacks requiring hospitalization, an urgent healthcare visit, or IV hemin treatment at home.

**Baseline Characteristics Generally Balanced Between Groups**

Baseline Demographics and Disease Characteristics of Patients in ENVISION

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Placebo Crossover (N=46)</th>
<th>Givosiran (N=48)</th>
<th>All Patients (N=94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at screening, years, median (range)</td>
<td>36 (20, 60)</td>
<td>42 (19, 65)</td>
<td>38 (19, 65)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>41 (89)</td>
<td>43 (90)</td>
<td>84 (89)</td>
</tr>
<tr>
<td>AIP with identified mutation, n (%)</td>
<td>43 (93)</td>
<td>46 (96)</td>
<td>89 (95)</td>
</tr>
<tr>
<td>Years since diagnosis, median (range)</td>
<td>6.46 (0.1, 38.5)</td>
<td>6.98 (0.2, 43.3)</td>
<td>6.55 (0.1, 43.3)</td>
</tr>
<tr>
<td>Prior hemin prophylaxis, n (%)</td>
<td>18 (39)</td>
<td>20 (42)</td>
<td>38 (40)</td>
</tr>
<tr>
<td>Historical AAR(^a), median (range)</td>
<td>7.0 (0(^b), 46)</td>
<td>8.0 (4, 34)</td>
<td>8.0 (0(^b), 46)</td>
</tr>
<tr>
<td>Chronic symptoms daily or most days between attacks, n (%)</td>
<td>26 (57)</td>
<td>23 (48)</td>
<td>49 (52)</td>
</tr>
<tr>
<td>Opioid use daily or most days between attacks, n (%)</td>
<td>13 (28)</td>
<td>14 (29)</td>
<td>27 (29)</td>
</tr>
<tr>
<td>Baseline urinary ALA (mmol/mol Cr), median (range)</td>
<td>16.4 (1.4, 41.5)</td>
<td>16.4 (1.8, 88.9)</td>
<td>16.4 (1.4, 88.9)</td>
</tr>
<tr>
<td>Baseline urinary PBG (mmol/mol Cr), median (range)</td>
<td>39.3 (3.6, 87.7)</td>
<td>39.6 (0.4, 150.0)</td>
<td>39.6 (0.4, 150.0)</td>
</tr>
</tbody>
</table>

\(^a\)Composite porphyria attacks are attacks requiring hospitalization, an urgent healthcare visit, or IV hemin treatment at home. \(^b\)One patient in the placebo group did not meet inclusion criterion of ≥2 attacks requiring hospitalization, urgent healthcare visit, or IV hemin at home within 6 months prior to screening (patient had 2 attacks that were treated at home without IV hemin). This was identified as a protocol deviation. AAR, annualized attack rate; ALA, δ-aminolevulinic acid; Cr, creatinine; IV, intravenous; PBG, porphobilinogen.
Sustained Lowering of ALA and PBG Levels with Long-Term Dosing

• During the OLE, givosiran treatment led to sustained reductions in ALA and PBG levels through Month 18
• Patients with AHP achieved near normalization or normalization of ALA and PBG levels with givosiran treatment

Median Urinary ALA Levels over Time

Median Urinary PBG Levels over Time

**OLE data for givosiran 1.25 mg/kg and 2.5 mg/kg groups are pooled**

AHP, acute hepatic porphyria; ALA, δ-aminolevulinic acid; DB, double-blind; Givo, givosiran; OLE, open-label extension; PBG, porphobilinogen; PBO, placebo

1. Agarwal et al. JIMD Reports 2020; DOI:10.1002/jmd2.12173
Long-Term Givosiran Dosing Led to Sustained Reduction of Attacks

- Continued givosiran treatment led to sustained reduction in attacks during the OLE period
  - Following initial 6 months of givosiran treatment in the OLE, placebo crossover patients continued to have a sustained reduction in attacks after 12 months of treatment (median AAR 1.8 vs 1.6, respectively)\(^1\)

\(^{a}\)Descriptive analysis. \(^{b}\)Placebo crossover patients receiving givosiran 2.5 mg/kg (n=29) or 1.25 mg/kg (n=17)
AAR, annualized attack rate; DB, double-blind; OLE, open-label extension

With a further 6 months of givosiran treatment, proportion of patients with zero attacks during the OLE period was sustained – 61.7% vs 60.9% (Month 12 vs Month 18) for continued givosiran patients¹ – 42.2% vs 40.0% (Month 12 vs Month 18) for placebo crossover patients¹

¹The estimate for each 3-month interval is calculated as total number of attacks/total number of patients reached that 3 months. Three months=28 × 3 days. ²OLE data for 1.25 mg/kg and 2.5 mg/kg are pooled DB, double-blind; OLE, open-label extension

Givosiran led to sustained reductions in hemin use, with median days of hemin use being 0.0 days for both groups during the OLE period, compared with 15.0 days for placebo patients during the DB period.

- Over half (51%) of placebo crossover patients had zero days of hemin use at Month 18 of the OLE period, compared with 26% in the DB period.
Further Improvement in QOL with Long-Term Dosing

- Patients experienced further improvements in QOL, as assessed by SF-12 Physical Component Summary and EuroQol-visual analog scale health-related questionnaire scores, with givosiran treatment
  - Improvements in QOL scores were observed at Month 6 and Month 18 in patients continuing givosiran treatment, while placebo crossover patients had similar improvements at Month 18 to those seen in givosiran patients in the DB period

SF-12 Physical Component Summary

- Change from Baseline in Mean SF-12 PCS Scores
  - Continued givosiran patients: 5.1
  - Placebo crossover patients: 7.0
  - DB Period (Month 6): 9.9
  - DB Period (Month 6): 1.7
  - OLE Period (Month 18): 5.2

EuroQol-visual analog scale health-related questionnaire

- Change from Baseline in Mean EQ-VAS Scores
  - Continued givosiran patients: 13.7
  - Placebo crossover patients: 8.3

---

*Estimates for the clinically meaningful difference are ≥2–5 points for SF-12 PCS and 7–8 points for EQ-VAS, based on published data for other chronic diseases*.1-4

DB, double-blind; EQ-VAS, EuroQol-visual analog scale health-related questionnaire; PCS, Physical Component Summary; QOL, quality of life; SF-12, Short Form (12-item) Health Survey

Improvement in Patient-Reported Outcomes with Long-Term Dosing

• The PPEQ questionnaire observed further improvements across all domains in patients continuing givosiran treatment compared with the DB period\(^1\)
  – Improvements across all domains were also observed in placebo crossover patients compared with the DB period

\[ PPEQ: \text{Continued Givosiran Patients} \]

<table>
<thead>
<tr>
<th>Domain/Outcome</th>
<th>DB Period (Month 6)</th>
<th>OLE Period (Month 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveling &gt;1 day for work or pleasure</td>
<td>35.1</td>
<td>73.3</td>
</tr>
<tr>
<td>Participating in social activities</td>
<td>35.1</td>
<td>53.3</td>
</tr>
<tr>
<td>Planning for future events</td>
<td>35.1</td>
<td>64.4</td>
</tr>
<tr>
<td>Doing household chores</td>
<td>35.1</td>
<td>53.3</td>
</tr>
<tr>
<td>Exercising moderately</td>
<td>32.4</td>
<td>53.3</td>
</tr>
<tr>
<td>Convenience of treatment</td>
<td>72.2</td>
<td>86.7</td>
</tr>
<tr>
<td>Overall satisfaction with treatment</td>
<td>72.2</td>
<td>88.9</td>
</tr>
<tr>
<td>Study drug helping more normal life</td>
<td>41.7</td>
<td>46.7</td>
</tr>
</tbody>
</table>

• Givosiran treatment led to a decrease in the number of work days missed due to porphyria in the past 4 weeks in both patient groups when compared with placebo crossover patients in the DB period\(^a\)
  – Mean (SD) of 2.4 (6.8) days vs 1.8 (6.3) days (Month 6 vs Month 18) for continued givosiran patients\(^b\)
  – Mean (SD) of 6.7 (7.8) days vs 2.5 (5.1) days (Month 6 vs Month 18) for placebo crossover patients\(^c\)

\( ^a \)Including only those patients who have been employed in the past 4 weeks. \( ^b \)Patient numbers: n=17 at Month 6; n=20 at Month 18. \( ^c \)Patient numbers: n=20 at Month 6; n=23 at Month 18

DB, double-blind; OLE, open-label extension; PPEQ, Porphyria Patient Experience Questionnaire; SD, standard deviation

Safety Profile\textsuperscript{a} of Givosiran Remained Acceptable with No New Safety Concerns

- Mean (SD) exposure was 18.9 (3.6) months for continued givosiran patients and 13.0 (3.6) months for placebo crossover patients, with maximum exposure of 25.1 months
- Majority of AEs continued to be mild or moderate in severity
- Most common related AEs (≥10%): ISRs, nausea, and fatigue\textsuperscript{c}
- SAEs in ≥2%: UTI, CKD, and device breakage\textsuperscript{d}
- There were no deaths

- During interim period between data cuts at Months 12 and 18, there was one new AE of drug hypersensitivity which led to treatment discontinuation\textsuperscript{e}
  - No new treatment-related SAEs or safety concerns regarding hepatic AEs

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
 & Placebo Crossover (N=46) & Givosiran (N=48) & All Patients (N=94) \\
\hline
At Least 1 Event, n (%)\textsuperscript{b} & & & \\
AEs & 43 (94) & 47 (98) & 90 (96) \\
SAEs & 9 (20) & 15 (31) & 24 (26) \\
Severe AEs & 12 (26) & 12 (25) & 24 (26) \\
AEs leading to treatment discontinuation & 1 (2) & 1 (2) & 2 (2) \\
AEs leading to study withdrawal & 0 & 1 (2) & 1 (1) \\
Deaths & 0 & 0 & 0 \\
\hline
\end{tabular}
\caption{Safety Summary in Patients Receiving Givosiran\textsuperscript{a}}
\end{table}

\textsuperscript{a}Safety data from first dose of givosiran to data cut-off date (January 10, 2020). \textsuperscript{b}For calculating exposure: 1 month=30.44 days. \textsuperscript{c}ISRs occurred in 36% of patients (103 events), nausea in 30%, and fatigue in 23%.
\textsuperscript{d}Each SAE occurred in 2 patients. \textsuperscript{e}SAE of LFT abnormal that led to treatment discontinuation during the DB period previously reported.

AE, adverse event; CKD, chronic kidney disease; ISR, injection-site reaction; LFT, liver function test; SAE, serious AE; SD, standard deviation; UTI, urinary tract infection
Renal Events in Patients with AHP

- Renal AEs (mostly increased serum creatinine and/or decreased eGFR) occurred in 16 patients (17%)
  - None led to discontinuation of study treatment
- Small decreases in eGFR observed early in therapy which stabilized by Months 12 to 18

![](image)

*The line and dot inside the box indicate the median and mean value respectively. The bottom and top edges of the box indicate interquartile range (IQR). The vertical lines represent the most extreme point within 1.5x IQR. Any value more extreme than this is marked with a dot.*

AE, adverse event; AHP, acute hepatic porphyria; BL, baseline; eGFR, estimated glomerular filtration rate; IQR, interquartile range; M, month; W, week; Q1, lower quartile; Q3, upper quartile.
18-Month ENVISION OLE Summary

• Givosiran decreased ALA and PBG levels through Month 18
• Reductions in annualized rate of composite porphyria attacks in patients with AHP were sustained during the OLE period
  – Placebo crossover patients had an 85% reduction in AAR compared with the DB period
  – More than 60% of continued givosiran patients continued to have zero attacks during the OLE period
• Median annualized days of hemin use reduced from 15 to zero during OLE for placebo crossover patients
• Givosiran treatment led to improvements in multiple measures of QOL and reductions in work days missed due to porphyria
• The safety profile of givosiran remained acceptable and consistent with that previously observed
• In the ongoing ENVISION OLE, patients receiving long-term treatment with givosiran demonstrated a durable response in clinical efficacy across a wide range of clinical parameters

AAR, annualized attack rate; AHP, acute hepatic porphyria; ALA, δ-aminolevulinic acid; DB, double-blind; OLE, open-label extension; PBG, porphobilinogen; QOL, quality of life